第十三章《论道》(7)
时—空与特殊五·一现实的时空是个体化的时—空。
本条实在是一口气说两句话。现实的时间空间虽会个体化,而不必个体化。空间底个体化不必兼是时间底个体化,而时间底个体化也不必兼是空间底个体化。本条底前一部分仅提到分别地现实的时空,而后一部分就接着提到联合的个体化的时—空。此所以本条一口气说两句话。
但是(1)一可能底个体化非先现实不可,不现实不能个体化。(2)一可能底现实即一可能底时间化,这可以从能有出入及其余有关时间的条文即知。(3)即有(1)(2)两项理由,则空间底个体化亦即时间底个体化。这就是说所有在空间的个体也是在时间的个体。从这一方面看来,现实的时空不仅不会不是个体化的时与空,而且不会不是个体化的时—空。
这也许就是现在流行思想中的四积量世界底时—空,也许不是,无论如何照本文底说法,每一个体均有积量,那就是说,它有时间上的长短与空间上的宽窄、厚薄、长短。
五·二个体化的时—空底秩序以个体为关系者。
这一条也是把两方面底秩序联合起来,时间与空间均各有其秩序。根据上条,这两秩序联合起来成时—空底秩序。这里所说的秩序就是从前所曾经说过的连级的秩序。这里的关系者就是relata,前此我叫它们做关系分子。一方面那名称不妥,另一方面“关系者”这一名称比较地通行,所以现在我改称relata为关系者。连级的秩序是关系与关系者组织成的。本条表示个体是时—空秩序中的关系者。至于关系,本条虽没有明文表示。而我们知道就是时间上的先后,与空间上的左右、前后、上下。
在“现实底个体化”那一章里,我曾表示对于个体,空间有空隙,对于“能”,空间无空隙,时间的情形大致一样;所不同者在我们底经验中,我们也许不感觉时间有相对于个体的空隙而已。但是,无论时间有相对于个体的空隙与否,它总没有相对于“能”的空隙。从能这一方面着想,时—空底秩序总是连续的或没有间断的连级的秩序。
本条所注意的不是把东西与事体底分别抹杀。这分别对于我们底经验似乎是很根本的。我们所要注意的是从某方面看来,东西是这里所说的个体,从某方面看来,事体也是这里所说的个体。东西与事体虽可以分,也可以合,而我们谈个体的时候,东西与事体都在我们谈论范围之内。
正确内(容在%六九%书'吧读!{
这里说兼有的意思就是表示非整个的时间空间不仅有绝对时空上的关系而且有相对的时空上的关系。它们有绝对的时空似乎不成问题,即成问题,前此已经讨论过。相对的时空底秩序根据于绝对的时空底秩序,我们曾经以专条提出。可是,我们要注意从比较狭义的经验着想,我们所经验的是相对的时空,而绝对的时空似乎要在相对的时空中才能得到。这层意思以后再提出讨论。
对于空间我们也可以用同样的办法。我们可以把空间分成宽长厚相等的一格一格底空间,用一格作起点把在它前后、左右、上下的一格一格底空间都给以相当的数目。每一格对于其它任何一格底距离底宽长厚的关系与对于其它任何另一格的距离底宽长厚的关系完全一致。这完全一致的情形也可以用数目表示出来。从各格底排列说,整个的排列是秩序。从这排列中任何一格说,它有它在这排列中至当不移的位置。每一格可以缩小,而这缩小程序底极限是空线。各格既有它底至当不移的位置,相应于各格的空线也有至当不移的位置。
时面上的个体是无时间积量的个体。在定义上时面有空间积量,但时面是特殊底极限,是老不现实的可能,所以它不会有个体,那就是说时面上没有个体。时面上虽没有个体,而个体在时间上的特殊化底极限仍是时面上的个体。个体在时间上的特殊化虽不能达到时面,而仍以时面为极端特殊化底标准。
五·四时面是无时间积量的整个的空间。时间有无量数的时面。
时面是往而不返的极限,空线是居而不兼的极限。如果我们注重惟一无二,我们也可以特别地提出空线来讨论。非空线的空间当然不兼其所不居,但在它所居的范围之内,它既有所据,所以也兼任何部分空间之所居。任何空线根本就无所谓据,所以无论如何不会兼任何其它空线之所居。可是,它虽不据而它仍有所居,它是空间中绝对的位置。这里所说的绝对的位置也可以说就是惟一无二的位置。惟一无二也是特殊底条件之一,从惟一无二这一方面着想,从惟一无二的空间着想,空线本身就是特殊底极限。
五·一○条已经表示空线不往不来,这当然是就整条的空线说。若不从整条空线而从某一空线在某一时间上说,它本身虽惟一无二,而它底已往的部分也往而不返。把这时间上的距离缩小,这条空线在时间上的特殊化底程度也愈高。可是,这距离无论如何地缩小,它不会等于零,所以空线无论如何地时间特殊化,它总不会达到特殊化底极限,那就是说,总不会达到时面。在时面上的空线就是时点—空点。这就是这里所说的时点—空点是空线底时间特殊化底极限。
五·一五时面、空线、时点—空点都是可能,都是特殊底极限。
我们既把特殊化限制到时间上的特殊化,空间也有特殊化底问题。在这里谈空间有点像在五·一六、五·一七两条谈个体一样。空间与个体当然不同,可是,空间底时间特殊化与个体底时间特殊化有一致的程序。空间底时间特殊化底极限是时面上的空间。如果所谓空间是整个的空间,则它底时间上的特殊化底极限就是时面。如果所谓个体是整个的本然世界,则它底时间上的特殊化底极限也是时面。其余非整个空间在时面上的空间仍是空间。但是它既无时间积量,当然还是不会有能。
五·五在个体化的时—空中,任何空间可以渐次缩小。空线是这缩小程序底极限。
各不同空间底极限虽一样,而它们底缩小程序,因原来的形式之不同,而有在程序中横断面底形式底不同;例如原来两空间中,一为球形的,一为立方体的,这两空间底缩小程序中的横断面,前者为球形的,后者为立方体的。请注意这里所说的是横断面而不是极限;无论横断面底形式如何,极限仍是空线。
五·二二个体虽特殊而特殊化底程度不一。
时点—空点最没有问题,它既无时间积量又无空间积量,没有时间积量所以同时面一样,往而不返,没有空间积量所以同空线一样居而不据。
五·一八空间底时间特殊化即空间底时间位置化。时面上的空间是空间底时间特殊化底极限,地点是特殊的空间。
请注意这里所表示的不必与科学家之所发现有任何冲突。我们用不着说科学家所谈的时—空应该是或应该有绝对的时—空,我们也用不着表示在科学范围之内相对的或手术论的时—空不够科学家本身底用处。个体与个体之间的时—空秩序仍是他们底相对的秩序底根据,仍是他们谈时—空秩序时所谈的最后的对象。如果研究哲学的人们认为科学家在科学范围之内也要用绝对的时—空,他们就跑到他们自己所研究的范围之外去了。同时,如果一科学家不兼是一哲学家他决不至于说在科学所研究的范围之外没有绝对的时—空。
本条似乎没有甚么问题,但也许有不清楚的地方,为表示清楚起见,以下的办法或者有点帮助。
时面之无时间积量是当然的,如果它有时间积量,它就不是缩小程序底极限。可是,为甚么它是整个的空间呢?我们知道民国二十六年(1937)三月十五日北平正午十二点钟不是在纽约的正午十二点钟。但是,这句话底积极根据是北平底某时等于纽约底某时。既然如此,无论北平也好,纽约也好,一地方底一时间总兼是任何另一地方底某一相当的时间。这就是任何一地方底任何时间横切所有的地方。从一地方底时间横切所有的地方这一点着想,任何地方底任何时间就是那时候的整个的空间,因为现实的空间与现实的时间彼此不相离。所以把任何时间渐次缩小,而空间不渐次缩小,相当于那时间的时面(即它底极限)虽没有时间积量而是整个的空间。这就是说时面无时间上的长短,有空间上的宽窄、厚薄、与长短。
如果长,它也可以长到并且超过普通所谓现代或近代。
这种综合的可能,既是可能,当然没有矛盾。可是,它虽然没有矛盾,而它仍免不了有冲突。这一点以后谈人的时候非常之重要。我们在本书所要注意的是无论甚么综合的可能都有冲突底问题。各个体既都是一现实的综合的可能,各个体底尽性总有彼此不能兼顾的情形。这种不容易兼顾的情形不但人有,草木鸟兽也有,即无生命的东西也有,关于这一层,三·二二已经提到了一下。
如此,所谓现在也有等级问题:例如“现在”国联如何如何,与“现在”花开得怎样,这两句话中的“现在”底来与往不是同等级的,在时间上,它们不表示相等的时间。
我们可以利用特殊化程度低的情形推测到特殊化程度高的情形,也可以利用特殊化程度高的情形推测到特殊化程度低的情形。兹以p程度特殊化的甲个体为例。设甲个体底性质关系为φ,ψ,…,则在甲个体特殊化底程序中,比p程度更高的p1,p2,p3,…,pm,…,pn,甲个体底性质关系大概也是φ,ψ,…。反过来,设pm与pn程度特殊化的甲个体底性质与关系为φ,ψ,…。则包括pm,…,pn而比pm或pn程度更低一级的特殊化的甲个体底性质关系也大概为φ,ψ,…。这里所说的“大概”应有原则以为根据。但在现在,我们不提出此问题。
个体化的时—空底秩序根据于绝对时—空底秩序,而绝对时—空底秩序又根据于时面、空线、时点—空点底至当不移的位置。这位置都是特殊,所以个体化的时—空底任何位置也是特殊的。既然如此,个体之在某一时某一地也是特殊的个体。所以个体底特殊化就是个体底时—空位置化。个体既有时空,不会不时—空位置化。
个体所占的空间,无论它底时间特殊化底程序若何的高,总是有时间积量的空间,这就是说个体所占的空间虽特殊化而它总不会达到极限特殊底程度上去。这样的特殊空间我们名之为地点。整个的空间除外。地点总是有时间积量的。说一件东西在某一地点,无论指出时间与否,总有时间上的范围。地点总是相对的,说一东西在某一地点,所谓地点总是相对于同时间中个体与个体底种种关系。
五·一○任何时面据而不居,往而不返,任何空线居而不据,不往不来,任何时点—空点既往而不返又居而不据。
在个体化的时—空中,提出一任何大或任何小的空间,用某种方式,例如在宽窄、厚薄、长短上各日取其半,我们可以把这空间缩小,这缩小底程序有极限。这程序无止境而有极限。程序之有极限似乎是无问题的,程序之无止境也是无问题的。所以虽有极限而此极限终不能达。无论原来的空间若何的大或若何的小,这极限总是一样的。我们叫这种极限为空线。各不同大小的空间底极限虽一样,而它们底缩小程序因原来空间底大小不同而有长短底不相同;例如原来空间中,一为亚洲那么大的空间,一为房子这么小的空间,这两空间底缩小程序中,前者比较地长,后者比较地短。
空线底位置不是相对的。所谓不是相对的就是说它不相对于个体底位置。这里的意思颇复杂。我们暂且用以下的说法表示,成功与否,颇不敢说。今天十二点钟的太和殿占相对的空间,也占绝对的空间。前者是根据于北京城内其它房子等等个体,后者根据于某某空线所范围的位置与空间,相对于地球,前一项的关系,除动的个体之外,在今天与昨天的十二点钟大都一样。但是,相对于太阳系,太和殿昨天十二点钟所占的位置不是今天所占的位置。相对于其它行星恒星,话更不容易说了。可是,太和殿昨天十二点钟所占的位置,从空线所范围的位置着想,仍是今天的位置,不过太和殿今天是否在那位置上我们在事实上没有法子知道而已。也许从此以后,太和殿不会回到昨天十二点钟所占的空线的位置上去。无论如何,那位置在无量数年之前,已经是那位置,在无量数年之后,也还是那位置。那位置是绝对的。空线穿过所有的时间,空线所范围的位置也穿过所有的时间。这就是说,无论在甚么时间这位置不变,所以绝对。
五·二七存在的个体是一现在的个体。
五·二○任何两时间的整个的空间仅有绝对时间上的先后,任何两地点的整个的时间仅有绝对空间上的关系。
第二(1),这里所谓特殊也就是普通所谓特殊。普通所谓特殊有两方面的意思。一方面是往则不返,另一方面是惟一无二。这两方面的意思可以分开来,也可以联合起来。如果我们分别地从时间或空间着想,我们可以说在任何一时间内,所有的个体都占惟一无二的空间。在此情形之下,我们用不着谈往则不返这一层。所谓惟一无二就是本条所说的居而不兼。可是,如果我们从空间方面着想,在任何空间,所有的个体在时间川流中都分别地往而不返,无论它们在空间上的位置如何。这就是本条所说的往则不返。所以分开来说,只要往则不返就是特殊,只要居则不兼就是特殊。
五·九以任何时间为单位,先于此单位者为此单位之既往,后于此单位者为此单位之将来。以任何空间为单位,对于此单位之外之空间,此单位有所居,对于此单位之内之空间,此单位有所据。
任何时间总是往而不返的。请注意这里所说的是往而不返,已来而未往的情形当然不在这句话底范围之内。一时面是一时间底缩小程序底极限,它底位置就是那时间底位置。原来的时间过去,与它相应的时面也就过去;不仅过去,而且从此以后就不再来。所以往而不返。但时面之所以为时面是因为它虽无时间积量而兼是一时间的整个的空间;它虽无时间上的长短,而有空间上的宽窄、厚薄、长短。可是,它是整个的空间,所以它无外,无外所以不居;任何其余非整个的空间都在它底范围之内,所以它有内,有内所以有所据。此所以据而不居。任何空间均有所据,但是,如果我们把一空间缩小,它底外面增加,它底里面缩小,则这缩小程序底极限有外而无内。空线既是这缩小程序底极限,所以它居而不据。可是空线是无空间积量的整个的时间。既是整个的时间,所以它不往不来。其所以说不往不来,无非是因为我们这里所注重的是“一空线”。把“一空线”当作一整个的线看待(其实也没有别的看法),在任何时间,它没有完全地往,在任何时间也没有完全地来。如果我们把空线分作部分,我们当然可以说有既往的部分,也有未来的部分。但是,这个说法注重既往与未来底分别,既往的部分绝对不是未来的部分,所以这个说法所注重的不是“一空线”。注重“一空线”,它不往不来。
这里说个体化的时—空就是表示我们从能够经验的时—空说起。个体能经验的时间一空间是个体化的时间一空间,无个体而仅有能的时间或空间也许不是任何个体所能经验的。
空线之无空间积量,好像时面之无时间积量一样,这是显而易见的。如果空线有空间积量,它绝对不是空间缩小程序底极限。可是,为甚么是整个的时间呢?我们知道这房子今天的空间从北平、亚洲、地球这方面着想,仍是昨天的空间,但是,从太阳系那一方面着想,不是昨天的空间。这一句话底后一部分如果有意义,它底根据是另一句话。那另一句话就是:这房子昨天的空间相对于太阳系是今天的某一空间。既然如此,把空间与空间底关系抽出去,任何一时间的某一空间兼是另一时间的某一空间。这就是说任何一时间的一空间是任何时间的某一相当的空间。这样,任何一空间直削时间底层次,或所有的时间穿过那一空间。所以如果我们把任何一空间缩小,这缩小程序底极限虽无空间积量而与时间同寿命。换句话说,空线虽无空间积量,而有历史,并且它底历史与时间同样的长。时面之所以称为时面,因为它是横切时间川流的整个的空间;空线之所以称为空线,因为它是一条在空间直冲下来的整个的时间。
本条关于时间部分用不着提出讨论。普通所谓既往与将来是对于现在而说的。在时间川流中,所谓“现在”总有所指,而所指总是特殊的时间,我们现在不讨论这种特殊的时间上的所指。无论如何,它总兼是一单位,我们可以用单位这一概念去范畴既往与将来。
在个体化的时—空中,提出一任何长短的时间。(一年、一月、一日、一时等等)我们可以用某种算学方式的方法,例如“日取其半”,渐次把该时间缩小,这缩小底程序无止境而有极限。无止境所以这极限不能达,可是,虽不能达而有这极限似乎是毫无问题。同时无论原来所提出的时间如何的长或如何的短,而极限总是一样。此极限我们叫作时面。
以上两方面的意思同时并重固然可以,注重任何一方面也可以。每一方面都有它底具体的特殊。特殊是一现实的可能。从往则不返这一方面看来,在任何时间的本然世界往则不返。这当然就是说在任何时间总有具体的特殊。
特殊化程度底高低是非常之重要的问题,我们要重复地提出一下。设以p1,p2,p3,…,pn代表一特殊化程度由高到低的秩序,相对于p1,p2不是特殊,相对于p3,p2是特殊;相对于p2,p3不是特殊,相对于p4,p3是特殊。其余由此类推。假如在此秩序中有最低的程度,则在此最低程度的个体不是特殊。包括一切的或无时间限制的本然世界不是特殊的个体。
个体与个体之间的特殊化底程度不一。特殊化之有程度问题从以上讨论特殊底极限就可以知道。特殊化既有极限,当然有程度,有程度,当然可以分层次或等级。个体与个体之间,有些特殊化底程度高,有些程度低,例如我这张桌子与西山。从程度高的个体这一方面着想,程度低的特殊的个体不是同一等级或同一层次的特殊个体,所以在那一等级或层次,程度低的特殊个体不是特殊。笼统一点地说,以程度高的特殊为标准,程度低的特殊个体不是特殊。这句话表面上有冲突,其实没有。
有上面的注解,本条底话可以说是用不着说的,其所以要说的道理不过是要表示相对时空底重要。这当然不是说绝对时空不重要。重要与否本身是相对的。从我们底经验看来,从科学看来,从普通的知识看来,相对的时空非常之重要。我们能够度量的时空,我们能够以手术论的方式去表示的时空都是相对的时空。
假如我们以某一时间的现实为现在,一方面这现在是特殊的,另一方面它既是现实而不仅是一个体,它所包含的范围非常之广。例如我们说“现在的民主主义不行了”这样的话,我们所谈的不关于个体,或不直接地关于个体。
这里说的是位置至当不移,既不是说时间不移,也不是说用以表示此位置的数目至当不移。这里数目之与位置有点像语言之与实物。一位置可以用不同的数目表示,可是,如果我们用两不同的数目表示位置,其余位置的数目虽彼此不同,而仍可以彼此对译。这也就表示位置至当不移。
个体化的时—空底秩序,各个体在时—空中的位置,各个体彼此的距离(无论时间或空间),从经验、试验、度量、手术方面着想,都直接或间接地根据于个体与个体之间的关系。但从标准、理解、意义方面着想,它们不能不根据于绝对时—空底秩序。这个问题在我论手术那节文章里曾提出一方面的道理。仅有手术论的或相对的时—空,在科学范围之内或者是已经够了,已经不必多求;但在哲学范围之内,手术论的或相对的时—空总是不够用的。罗素好像曾表示过相对论一方面固然是相对论,另一方面也可以说是绝对论。因为要在引用相对论的条件之下,我们在事实上才能找出实在准确的时—空度量。可是,这实在准确的度量底理论上的标准仍是绝对的时—空。既然如此,本条表示个体化的时—空底秩序根据于绝对时—空底秩序。